📄
Sunbird Saral
  • Sunbird Saral Overview
  • Saral Quick Guide
  • Saral Implementation Manual
    • OMR led scanning - Assessments
    • OCR led scanning - Admissions
  • Saral Transformation Story
  • LEARN
    • Software Requirement
    • Application Architecture
    • Features
      • Configurable Branding
      • Capture AI/ML Training Data
      • Support
      • Share App data
      • Auto Sync
      • Multi-Page support
      • Profile Menu
      • Dynamic Validations
      • Dynamic Tagging
      • Minimal Mode
      • Offline mode
      • App Force Update
      • Review results/marks
      • Firebase Analytics and Crashlytics
      • ML model deployment using Firebase
      • Improved Low light Performance - Manual Edit
      • Vertical Forms Scanning Support
      • Improve Processing Speed for big layouts
      • Admissions Data Capture
      • Securing PII Data Capture - Admissions
    • Specifications
      • Layout specification
      • Backend API Swagger Doc
    • Videos
      • Feature Explanation
        • OMR Layout scanning
        • Auto-Sync
        • Share scan app data
        • Skip feature
        • Support feature
        • Validation feature
        • Incorrect scanning
        • Multi-page feature
        • Branding feature
        • Offline mode
        • Review results/marks
      • Usage by States
        • Gujarat Implementation - Between 39:00 - 40:00 mins
        • Uttar Pradesh(U.P) , Gorakhpur Implementation
    • ML Model Accuracy/Results
  • USE
    • Roadmap
    • Workspace Setup - Playbook
    • Saral App Reference Backend
    • Generating APK from source code
    • Generate AAB(App bundle) from source code
    • Sign already generated APK file with private Key
    • Layout configuration
    • Debug/Run Saral App from Android Studio
    • Saral App Debug Tips
    • Saral App Usage Guidelines
    • Update BASE_URL,apkURL in APK
    • Update BASE_URL,apkURL in AAB
    • Sign already generated AAB(Android App Bundle) file with private key
    • Google Play Store App Publish Considerations
    • Layout Design Guidelines
    • Saral OCR Assets
    • Firebase setup for Saral App Telemetry
    • Firebase setup for TFLite model deployment
    • Alternatives for Saral components
  • ENGAGE
    • Source Code Repository
    • Saral SDK Source Code Repository
    • Tracker
    • Releases
      • v1.0.0-beta.1
      • v1.0.0-beta.2
      • v1.0.0-beta.3
      • v1.0.0-beta.4
      • v1.0.0-beta5
      • v1.5.0
      • v1.5.1
      • v1.5.2
      • v1.5.3
      • v1.5.4
      • v1.5.5
      • v1.5.6
      • v1.5.7
      • v1.5.9
      • v1.6.0
      • v1.6.1
      • v1.6.2
      • v1.7.0
    • Saral - Solution Providers
    • Discuss
  • Experience Saral
  • Dev Environment - Installation & Maintenance
    • Saral Installation Guide (Non-Prod)
    • Saral - Sandbox Maintenance Guide (Non-Prod)
  • Saral Easy Installer
    • Saral Production-Environment User Installation Guide
      • Manual Installation for Prod
      • Automating the Infra provisioning and install of the Saral application
        • Prerequisites
        • What automation does
        • Run installer
        • Post install steps
        • Monitoring-Stack
    • Reference Documents
      • SARAL Infra Requirements & Associated Cost
      • Saral Infra Cost Benefit Analysis
  • Tool for Saral Easy Layout generation and Auto generate ROI json
Powered by GitBook
On this page

Was this helpful?

Edit on GitHub
  1. LEARN
  2. Features

Capture AI/ML Training Data

Steps how to capture field specific training data to improve accuracy of AI/ML predictions

PreviousConfigurable BrandingNextSupport

Last updated 3 years ago

Was this helpful?

Saral App internally uses AI/ML model to predict scanned layout ROIs(Region Of Interest). Current capabilities of this model is to detect handwritten digits and OMR answers. Internally model is trained with database. But as the handwritten digits can be sometimes field specific , this feature is handy to collect training data from production and improve accuracy of the model predictions.

Step 1: For a selected school , make sure storeTrainingData flag to be returned as true from backend API GET /schools.

{
    "schools": [
        {
            "name": "Dummy school 1",
            "schoolId": "up001",
            "state": "up",
            "district": "delhi",
            "block": "haldwani",
            "hmName": "acbc",
            "noOfStudents": "100",
            "storeTrainingData": true,
            "createdAt": "2021-12-06T05:25:38.487Z",
            "updatedAt": "2021-12-06T05:25:38.487Z"
        }
      ]
  }

Step 2: Saral frontend application will capture layout ROIs(Region of Interest) images and convert them into Base64 images and send them as part of PUT /saveMarks API. Saral App also compares the actual preidictions with user overrides if any , and populate training data only if necessary. This training data can be extracted from backend to train the AI/ML model to improve accuracy on iterative fashion.

Sample request from Saral App to backend APIPUT /saveMarks

{
	"_id": {
		"$oid": "619b38c8b18890002b7b186b"
	},
	"studentIdTrainingData": [
		"/9j/4AAQSkZJRgABAQAAAQABAAD/4gIoSUNDX1BST0ZJTEUAAQEAAAIYAAAAAAIQAABtbnRyUkdCIFhZWiAAAAAAAAAAAAAAAABhY3NwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQAA9tYAAQAAAADTLQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlkZXNjAAAA8AAAAHRyWFlaAAABZAAAABRnWFlaAAABeAAAABRiWFlaAAABjAAAABRyVFJDAAABoAAAAChnVFJDAAABoAAAAChiVFJDAAABoAAAACh3dHB0AAAByAAAABRjcHJ0AAAB3AAAADxtbHVjAAAAAAAAAAEAAAAMZW5VUwAAAFgAAAAcAHMAUgBHAEIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFhZWiAAAAAAAABvogAAOPUAAAOQWFlaIAAAAAAAAGKZAAC3hQAAGNpYWVogAAAAAAAAJKAAAA+EAAC2z3BhcmEAAAAAAAQAAAACZmYAAPKnAAANWQAAE9AAAApbAAAAAAAAAABYWVogAAAAAAAA9tYAAQAAAADTLW1sdWMAAAAAAAAAAQAAAAxlblVTAAAAIAAAABwARwBvAG8AZwBsAGUAIABJAG4AYwAuACAAMgAwADEANv/bAEMAAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAf/bAEMBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAf/AABEIABwAHAMBIgACEQEDEQH/xAAYAAADAQEAAAAAAAAAAAAAAAAFBggHCv/EACoQAAIBBAEDAwQCAwAAAAAAAAECAwQFBhESAAchIjFBCBMUUSNxFWHB/8QAGAEAAgMAAAAAAAAAAAAAAAAAAgYDBAX/xAAnEQEAAQMCBQQDAQAAAAAAAAABAgMRIQRBAAUSMVEiMmGREyNxgf/aAAwDAQACEQMRAD8A6iMjyvGsNtct8zDI7Li9mXwbhfbhS2yj5DS8BNVyRIzsSoC7LFiABsjrI8P+qDsJn+TJimKdycdvN4b7qU1PSV9MyVUkSMzLSSCVkqSQnL+LegVJPnQ1XK8YxS/xUbZnRWu4Wa2s8whvq00luWaQKOUkdWPxiUZUZfugr4AA+DJHfGx9us0yDtXg3ayLCY8lpMpa73S4YjTWeCW0WtYY50kmqLOsSaqZaWSlKOToygaBffTlyfRaHWDT1Gi5hXleoup0taNPT0Apko/ljLS1leqw/th7wsPenGIl0k5bIhHKDm1u2/ZyHe/FsnjHOnOPizITpjoqSrAg+n4+fYnovRktApLBfJ8A6BGh51sa/r4/fQmrk+7XyyLpvuOdIoPoXQPHfgA8gfGvb2HROmopnjJUlQGIKqNgEKvj+/P/AH56wWAekkJsvpzjFr238P1wJhMuADqlbcLb+Pb3++E3K8PsWc2WosOT009ZaJXC1FPDX1tE7fbZHVWnpJY5SOaIT6tMPfwSDB/fTsH2ppLrh9k7TWC4WPvBcrpTzW25WS93hVtVsjd2atvIStNGKLnHNTla1R/LNGdD0dL1/wDqc7wsbVaaXIKC3C5TiGtuFJj1ievmVlYsw/OoKyhiclR6oaKPXwASerf7XY1bqLG6HIpDPccjvcCf5K/XFoZ7nMrOdxRyxQwRUsG0Vvx6WGGAOOYj5lmLCaOfKabrGu1SFZhGjGLCElpxeqpecuos26QG9lk2snKPQd3Egsb4JK33yWxb486hDBNDDSQySLJPBS08c8oBAaVIYxKxJ0Wbny0w2pA/fTPbpQlPxdwSHb1a2W2qnZ8j969vYDoEZCZ5W0o5hVIAPEAqo9IJOvbfv7kn56KUQ5wknxp2Hj/QX97/AH0uzn1rJMrdNuwf3Z4jveQ5vg2Nz4cYMf744//Z",
		"/9j/4AAQSkZJRgABAQAAAQABAAD/4gIoSUNDX1BST0ZJTEUAAQEAAAIYAAAAAAIQAABtbnRyUkdCIFhZWiAAAAAAAAAAAAAAAABhY3NwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQAA9tYAAQAAAADTLQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlkZXNjAAAA8AAAAHRyWFlaAAABZAAAABRnWFlaAAABeAAAABRiWFlaAAABjAAAABRyVFJDAAABoAAAAChnVFJDAAABoAAAAChiVFJDAAABoAAAACh3dHB0AAAByAAAABRjcHJ0AAAB3AAAADxtbHVjAAAAAAAAAAEAAAAMZW5VUwAAAFgAAAAcAHMAUgBHAEIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFhZWiAAAAAAAABvogAAOPUAAAOQWFlaIAAAAAAAAGKZAAC3hQAAGNpYWVogAAAAAAAAJKAAAA+EAAC2z3BhcmEAAAAAAAQAAAACZmYAAPKnAAANWQAAE9AAAApbAAAAAAAAAABYWVogAAAAAAAA9tYAAQAAAADTLW1sdWMAAAAAAAAAAQAAAAxlblVTAAAAIAAAABwARwBvAG8AZwBsAGUAIABJAG4AYwAuACAAMgAwADEANv/bAEMAAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAf/bAEMBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAf/AABEIABwAHAMBIgACEQEDEQH/xAAaAAACAgMAAAAAAAAAAAAAAAAGCAQFAwcK/8QAJRAAAgICAQQBBQEAAAAAAAAAAQIDBAURBgAHEiExCBMVIkGB/8QAGAEAAgMAAAAAAAAAAAAAAAAAAgQBBQb/xAAnEQABAwMDBAEFAAAAAAAAAAABAgMRBCExABJBBRMiYVFxgaHB8f/aAAwDAQACEQMRAD8A6g7LGOGCSaSGrF4fcdpZI4VCjY9uzKPLY3+xGgNn4PQ+nMOJRZZsUnLuMSZVpggxi8iw7ZB5GC+Kmot1rDSHyUBQhf8AZRo76z8y4VBzKpQrTX7tStStrYsVK7MY8vCqurUZz5q8KOzAmWIPIPAADW+lJ+qnt/2qqcS/DcZ4nxnHd6uQTwJw27xrGVKnLoMmI3grZS3kKEEeQWlVmeE2Wsz608LMrBQV1HTqWiqFpafbrXXFzApCiGkwT3XCplzc2gStYSQQlCvIWISgRPtN+BjNoOeDaPLNnYrSPJEQ29sfejsBPfoH9vTeiCPgf3R6nR1zIpZt+iQNEa0APjQI9b18/wA9++hPgFXIU+NYChmZWkytPAY2LISMWdmvQ0IFteTaJZxOsgZif2I3s9GCIzgtHNMi714oB47AAYj9D8ts/O/50lUtNs1DzTbncQ24tDbkABaEqISoSDO4Xkfc6EiLAzBP6/Hub8fJoeX4bJch4/Pg8fnL/F7c8biPNY1IpL1UksA8STFUDKWDK3kdEDXz0mr/AERWIuUQ83wHf3uLjucwRTR1c3lKuJzm3n+0zpJ+Wr5Bo6xeGLcMKFQiqqjSAGd2z59y3j3L+V8Okzd3keIgzN2Wo3KJpMrkKYsz2p2ggyKtWsmvEzhK8U7zrDFHHGmlXR2X3j7vcp4JjpLGEgw7zNR80kvVbU5hkasWEkQivQKHRiGTzDrtV81YbBuqZNf0xTRo6tLRqGGnioNIKkhwHxO9Dm6xIN0ggkYtoiVJtOADxiRN9p/nOdVnYbm/P15nzns73NyGL5DyjhcONyMPLsSi14c1js7JdasLldFijrWq8NZRMkdeuhmdlRSoAVp/tshKqSwU6JUHW/7rQ/33799K59KvFscnHc53BtS3cny7nVx7eezGRnWedkE7Wq9GoscUMdajTexMtWEI8iRuVeaT0em4iYIviI0PiSNt5En49nTAb/wdJ9XeDlSF7R3e2kVDkBHff3KLj2xHijfM7UwEmwEaheYGRn2YEn6nnAnA1//Z",
		"/9j/4AAQSkZJRgABAQAAAQABAAD/4gIoSUNDX1BST0ZJTEUAAQEAAAIYAAAAAAIQAABtbnRyUkdCIFhZWiAAAAAAAAAAAAAAAABhY3NwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQAA9tYAAQAAAADTLQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlkZXNjAAAA8AAAAHRyWFlaAAABZAAAABRnWFlaAAABeAAAABRiWFlaAAABjAAAABRyVFJDAAABoAAAAChnVFJDAAABoAAAAChiVFJDAAABoAAAACh3dHB0AAAByAAAABRjcHJ0AAAB3AAAADxtbHVjAAAAAAAAAAEAAAAMZW5VUwAAAFgAAAAcAHMAUgBHAEIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFhZWiAAAAAAAABvogAAOPUAAAOQWFlaIAAAAAAAAGKZAAC3hQAAGNpYWVogAAAAAAAAJKAAAA+EAAC2z3BhcmEAAAAAAAQAAAACZmYAAPKnAAANWQAAE9AAAApbAAAAAAAAAABYWVogAAAAAAAA9tYAAQAAAADTLW1sdWMAAAAAAAAAAQAAAAxlblVTAAAAIAAAABwARwBvAG8AZwBsAGUAIABJAG4AYwAuACAAMgAwADEANv/bAEMAAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAf/bAEMBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAf/AABEIABwAHAMBIgACEQEDEQH/xAAaAAACAgMAAAAAAAAAAAAAAAAGBwQIAQMK/8QAKxAAAgICAQMDAwMFAAAAAAAAAQMCBAUGEQcSIQATMQgUIkFRcSMyQmGh/8QAGQEAAgMBAAAAAAAAAAAAAAAAAAQBAgMG/8QAJxEAAgIBAwMDBQEAAAAAAAAAAQIDEQQSITEAQVETImEFFCNCkaH/2gAMAwEAAhEDEQA/AOp0skmRaT4EIxjPu/tPJ4J/2Pnt+Pj+PQre2LB4VLXZrLUsUlUWMky7ZgtcYd5nJkySZRj5557fn/ic6+dVc1rDdV6c9PFqu9UeorfaxE7R91Gv4hUpHIZ67VWVTMa9WFmVMycqM7CoQ7pEiIg6r9OGiYl9bI7Qhu9beD91n9k2BsrRyN+fE2rrVx7cEY8MMiqsZOlAQgJNkQZHqIcHHTGXLzJHVJS/28USgtKEbS5ZyRoAOmva12CKvdA7CxZu/Haj/nHzVjx04Nb6g6NurHr1PbcNsE6sorsLxNyLpJlIiJjKJiuR4I4JESB+p9Gc7ZqkLEwAR3gCAlxyTHyePJ/H59V56wdNdfx+GR1B1CnU1XbdOC7aruJX9qcliUShO5irYWQGpdWWxaxMkdzZemXW2FWRw+uZWbIoll8Bj8mVGMuY/dhkyPxBHggg/B5B8fuT42LJEmTiLLGpdonhlf1CpUIwcSgJYOqqMYA03ZsUChW5O547VW+47+DV11X3Zp0dO+r6nsO4uRRobJ0+RrWkZOzxGqciu8y2+ktsz2KtMUbEvxPdJZII4I9WsWmf9Pgntn+RmO0kw8ceSeCSCPHjn9hx6m7bpOp75hX4HcMDj9gxko98K+QVKZQ0GIi+u1cltS2J8xlCfAP6EEgpKn9LuqLWmpS3/rFjMT7s5rweN359TEpgvtMUKrQoFgRx+BhJ0iYcju8k+tsU4/1BI4p2mgaCNg0kcaZAkDFAoETS44TSF9zeo2om6WqNgA2kbjkcA3wbPG4G3e7/AFqjjrNfZsVWl0t1lht7FstmjLJmk/gYjCVLULFpttq+8LjbUl1T2zIGUmwjIcSJ9NOdHG4WniMSErCsfialOuGcSkK9ctUscgSH+EifJ8k/yduraNrGjoZU17GJrMbMC5kWgPymRkCY+7kL0gG2WERjzKXHPHx6JrCK7CosQphirtEpRPPb7rZAeCBwDI8ePSU2UojXEiT8cUruXcAPJI6opYgagq6VUadTURYbehBsE7nY1fG9A+fBH8+Ov//Z",
		"/9j/4AAQSkZJRgABAQAAAQABAAD/4gIoSUNDX1BST0ZJTEUAAQEAAAIYAAAAAAIQAABtbnRyUkdCIFhZWiAAAAAAAAAAAAAAAABhY3NwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQAA9tYAAQAAAADTLQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlkZXNjAAAA8AAAAHRyWFlaAAABZAAAABRnWFlaAAABeAAAABRiWFlaAAABjAAAABRyVFJDAAABoAAAAChnVFJDAAABoAAAAChiVFJDAAABoAAAACh3dHB0AAAByAAAABRjcHJ0AAAB3AAAADxtbHVjAAAAAAAAAAEAAAAMZW5VUwAAAFgAAAAcAHMAUgBHAEIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFhZWiAAAAAAAABvogAAOPUAAAOQWFlaIAAAAAAAAGKZAAC3hQAAGNpYWVogAAAAAAAAJKAAAA+EAAC2z3BhcmEAAAAAAAQAAAACZmYAAPKnAAANWQAAE9AAAApbAAAAAAAAAABYWVogAAAAAAAA9tYAAQAAAADTLW1sdWMAAAAAAAAAAQAAAAxlblVTAAAAIAAAABwARwBvAG8AZwBsAGUAIABJAG4AYwAuACAAMgAwADEANv/bAEMAAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAf/bAEMBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAf/AABEIABwAHAMBIgACEQEDEQH/xAAaAAACAwEBAAAAAAAAAAAAAAAGCAQHCQIK/8QAKhAAAgEEAAUEAgIDAAAAAAAAAQIDBAUGEQAHEiExEyJBUQgUFSNCcYH/xAAYAQACAwAAAAAAAAAAAAAAAAACBAEDBv/EACsRAAEDAwIEBAcAAAAAAAAAAAECAxEEEiEAMQUTIoEUUWHwQUJSkbHB4f/aAAwDAQACEQMRAD8A9Tf66qGMhVIYY2kdm0oREHUzuSe2h5LH47nip6fnJyYq70capOaOB1mTtVvTiw0uS2ya6rMkjRmB6JJWmWYN7GjIDKwKkA+SfmDhlbmn8ZCuTSW60RzOL3j6wtJS3qiZdNTVLiVG6GUspABBB+9HhfPyQ5dcq8Z5MXW12XD8est/rkFBgkFro44LnLkdUQtFJRsrGoMvqsu3V9qWBOuNPRsUbymm3l1BddcCQlgABCTbctalgYSmSYmLSTiTpGDtBk7fue35zjTRwhJGSo6iVYajC66Ton3KPBbW++z2+uJT+mD7QQPnfc7+fBUf8128cBHLyz3azYJiFFfpZJr1R2G3x1vW5LLO0CvIsnc/2oW9N96PUD57k2RRS22OALV0000vUT1p0hQvYBR376IPcffCtWy2xUvsNOc1tp1baHCTatCFlKVAp6TcADKek/KI0Jx799v7oL5kcysE5S4pV5bnd6p7Pb6aN2jWeZI6quqQNQUlFCxElRNM3SqxxI7gEuQFUkZy2T8o+XWaZpTc0ubdVfbPabI/rcvcTixa5V9Fb4lbcV4uFasTwVFzq0EQISQLTyQiRY06tnT67YPhuT1VrvGSYxZ77c7I0j2qrudO1U1G4ZiGjheT9ZmG+zSQuR8HibJS0aRqUoaBApUIiUNIiRqdL0oqwgKoHYDwPjh/h1fRUrLgdonnqlxVvPRVJaDbRSJS2g07hStVqgpwrULFEBsHOiFp+oRkwREGBsQTM+uR9tKZS/ml+OVzVJpM/wD48ysQRdrVcKJg7nYUoIpSBskdQHgb+9MFYspsuVWigv8Ajt2jr7NcoBPQ1sAdIqmLqZPVjEsSydJZSPcqnantrg3ZgnpqkUKAKXBSGJDsaPlUHyTv/f3xy6iRi0nvY/5P3OvgDfgD4HFVRU8LW2PDcOqmXJJLjvEUvApkAjlihagk/G8x5aiUiBCifUjOwzjzPfO2v//Z",
		"/9j/4AAQSkZJRgABAQAAAQABAAD/4gIoSUNDX1BST0ZJTEUAAQEAAAIYAAAAAAIQAABtbnRyUkdCIFhZWiAAAAAAAAAAAAAAAABhY3NwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQAA9tYAAQAAAADTLQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlkZXNjAAAA8AAAAHRyWFlaAAABZAAAABRnWFlaAAABeAAAABRiWFlaAAABjAAAABRyVFJDAAABoAAAAChnVFJDAAABoAAAAChiVFJDAAABoAAAACh3dHB0AAAByAAAABRjcHJ0AAAB3AAAADxtbHVjAAAAAAAAAAEAAAAMZW5VUwAAAFgAAAAcAHMAUgBHAEIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFhZWiAAAAAAAABvogAAOPUAAAOQWFlaIAAAAAAAAGKZAAC3hQAAGNpYWVogAAAAAAAAJKAAAA+EAAC2z3BhcmEAAAAAAAQAAAACZmYAAPKnAAANWQAAE9AAAApbAAAAAAAAAABYWVogAAAAAAAA9tYAAQAAAADTLW1sdWMAAAAAAAAAAQAAAAxlblVTAAAAIAAAABwARwBvAG8AZwBsAGUAIABJAG4AYwAuACAAMgAwADEANv/bAEMAAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAf/bAEMBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAf/AABEIABwAHAMBIgACEQEDEQH/xAAaAAACAgMAAAAAAAAAAAAAAAAGBwUIAQIK/8QAJhAAAgEEAQQDAAMBAAAAAAAAAQIDBAUGESEABxIxEyJBFCRRgf/EABcBAAMBAAAAAAAAAAAAAAAAAAEEBQb/xAAoEQACAQMDAwIHAAAAAAAAAAABAhEAAzEEIWEFEhNBUXGBsdHh8PH/2gAMAwEAAhEDEQA/AOowRyOAqebl9D6bIYH1obJ1vjZGuddRT1VN/MnpRUwiop0VngMqmZF4HkYVLSKCSF348k63+9Ji65Tk/dq/5D2/7f3CPGMYsb1FjyzO49S3KSpMINRQ46h1DDVCCZTHXSioWOVlb4SUZWS2U9m8U7EZr2lvXbmoyOe/5XmMGMZHV3nIbjdZbxb6mhr6ueprlqHkp42lr6eGRvgggjViqoip9RrtL0m09yxZ1OpNm/qQpt2Vt+SFZBcVrp71KhxBUEGQwM1OMgTG+23x5+f8q74I8UYkaIOwff216B9b45I449DXQRl95uNruVPBSNH8UlBDOd1EcP3aapjb6Md61GOT75H50ZKiySRjxO/qzEHgMFUkEk7AJ4AH771+Vz762+/1eW2yaz26WspzjVEs0ySQon8lbldwyASSox8Yvh5KjZJ6kG2qsQWMAkRG5gjOJH4xRXePSYPvn7Z5rOP4Z3V7Q5DlseI4VT9w8Sym+TX+iNJk1hx+5WaeoijgemrYr5W0i1MCtEJFemSZtvoHYIB7bMOyrIskt+Z9xIrVRT2GORccxm1yvVLa55nDmtudd8k1JWV8fiyRPSsYUSSRdaKjp4xxqWO9+yN750Nkc637P+/51rKihWOtlZABvn3sn/vTL9Q1LkMWTvW0lpbnjTyi2gRUUXI7wVVQJBkAQDQ2mBO5XPML9f04qOEagcIFIYetEtwPZ5H6fexodLjOqaZ7pRhWEQS1wp4/Ki7/ALdc/lpgx589b42B6/S0SOPIbBGteJK+wN78dE+9e/XVZO895q6LMEghSD41s1vYeaMW271LNsiRd8k/nSYZgRgzEyAcxvjPJmjmAPUgV//Z",
		"/9j/4AAQSkZJRgABAQAAAQABAAD/4gIoSUNDX1BST0ZJTEUAAQEAAAIYAAAAAAIQAABtbnRyUkdCIFhZWiAAAAAAAAAAAAAAAABhY3NwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQAA9tYAAQAAAADTLQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlkZXNjAAAA8AAAAHRyWFlaAAABZAAAABRnWFlaAAABeAAAABRiWFlaAAABjAAAABRyVFJDAAABoAAAAChnVFJDAAABoAAAAChiVFJDAAABoAAAACh3dHB0AAAByAAAABRjcHJ0AAAB3AAAADxtbHVjAAAAAAAAAAEAAAAMZW5VUwAAAFgAAAAcAHMAUgBHAEIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFhZWiAAAAAAAABvogAAOPUAAAOQWFlaIAAAAAAAAGKZAAC3hQAAGNpYWVogAAAAAAAAJKAAAA+EAAC2z3BhcmEAAAAAAAQAAAACZmYAAPKnAAANWQAAE9AAAApbAAAAAAAAAABYWVogAAAAAAAA9tYAAQAAAADTLW1sdWMAAAAAAAAAAQAAAAxlblVTAAAAIAAAABwARwBvAG8AZwBsAGUAIABJAG4AYwAuACAAMgAwADEANv/bAEMAAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAf/bAEMBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAf/AABEIABwAHAMBIgACEQEDEQH/xAAbAAACAQUAAAAAAAAAAAAAAAAHCAMCBAUGCv/EACwQAAICAgIABgECBwEAAAAAAAECAwQFEQYhAAcSEzFBIjJxCBQzUWGBkbH/xAAZAQACAwEAAAAAAAAAAAAAAAABAgAEBQb/xAApEQACAgEBBgUFAAAAAAAAAAABAgMRIQQAEjFBUWEFEyKBkXGhscHR/9oADAMBAAIRAxEAPwDqPdQwCIjnUnWtAL9j1dAAEA/+HvxY5TPYnDRC5l8pSx9Z9BZ7UqojFR16Sgbrs9jrv768LlzS83nT5jZHykgtXcfwvg38jY5tPQsNDNnbtqJmr4Z3jKkVECs049TblhTak/Bvw/A+NYjHQY2XFUszVrxrVqJlKsNuOrXQaWGCKf3EQBSdso9Xex346FtJHAkTah282QeZ5KgYjugWe7VjVgbhFEG80M/l3xY6cOf0yMdOuKcLzvh3K7NmlxrkWIzNik4FyGjOZJa7Noj3o3WN+ww0QpXsHetDxuMtQN7ZjmVPw0wJVfyDuOgSevSFG/vXwPCt8l4fj+O/xJ8KzXEqNDCrnOHZNOQ4/G144EuR08hSSO1MkSLGDFGI4/c6ZFIG9HpxMXDVkpo0wjLhmA9UKufTsEfkUY/JP314Oq02nVNPLCzIkytvJId9lZQl+oACmLemwPetgpJPAVdG8m7Fdut596OyU36ma8lfNHlXLJ8BmM9wXzFtVcjcyvH8bay93AZGAye4l+rUV5Vpu1hik0mlREJLd9F6l5yYDLwueOcZ59yCdUUoKfFrUdOORiFAs2JpEECA/wBVyj+hdn0k6HgyO2o9aUgvoggFdb1+k7U9E72D4jUA/j0q6/SoVV+QewoAPfhm8QjkRVm0kU8kQKiV5JVYgGhvCNlBoGgTZ3QBZGNmHfPD9fGBy/uwo4zxbLW87f5xy/2xnrkAp4fHV292HBYd+5qazEIzzWmjry2tqNSxEIAux4LUdw1UWIKwGg303z1vfqX+3+f3+hFKAH6HS7UD4A6J3oa739/88YXLTPFLWCEANURz+5mnXrRGhpR/vfio87yMLqkAVVobqgEDArJ4UxzXxtMXzrty/N19+23/2Q==",
		"/9j/4AAQSkZJRgABAQAAAQABAAD/4gIoSUNDX1BST0ZJTEUAAQEAAAIYAAAAAAIQAABtbnRyUkdCIFhZWiAAAAAAAAAAAAAAAABhY3NwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQAA9tYAAQAAAADTLQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlkZXNjAAAA8AAAAHRyWFlaAAABZAAAABRnWFlaAAABeAAAABRiWFlaAAABjAAAABRyVFJDAAABoAAAAChnVFJDAAABoAAAAChiVFJDAAABoAAAACh3dHB0AAAByAAAABRjcHJ0AAAB3AAAADxtbHVjAAAAAAAAAAEAAAAMZW5VUwAAAFgAAAAcAHMAUgBHAEIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFhZWiAAAAAAAABvogAAOPUAAAOQWFlaIAAAAAAAAGKZAAC3hQAAGNpYWVogAAAAAAAAJKAAAA+EAAC2z3BhcmEAAAAAAAQAAAACZmYAAPKnAAANWQAAE9AAAApbAAAAAAAAAABYWVogAAAAAAAA9tYAAQAAAADTLW1sdWMAAAAAAAAAAQAAAAxlblVTAAAAIAAAABwARwBvAG8AZwBsAGUAIABJAG4AYwAuACAAMgAwADEANv/bAEMAAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAf/bAEMBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAf/AABEIABwAHAMBIgACEQEDEQH/xAAZAAACAwEAAAAAAAAAAAAAAAAGBwUICQr/xAAuEAABAwMDAwIDCQAAAAAAAAABAgMEBQYRBxIhADFBE1EUInEIFRYYQmFigdH/xAAYAQEAAwEAAAAAAAAAAAAAAAABAAQFBv/EACQRAAEDAwQDAAMAAAAAAAAAAAECAxEEITEAEiJBBVFxgcHR/9oADAMBAAIRAxEAPwDqQU0kKTwBklPA548kknnA7YH14x0B3pqDaNjNyDX6isy4sUTRSIrTkie9HUstB4NtpKUthwEErWgjBOO3Q/qpqe9bMin2TZcBq4tS65kU6mLWVQqEwsA/fFeU0QYsRG8LbQtSXJAJLaVBKiFFqhZTlg6E31cNZr8uuX5UILEmt3PMUUuNvvSWW1RKe20G0xIDSFIZQwylCV7PVXuU4pR6mh8cFrpl1SXA1UOobaQiQt3cpIKgoA7QNyTMYNpI1nExkRnP4j3AM5OrB0atMXDS4FZhlaYdTjR5sZt1JDqI8lO9vekHAVtIBSMnxx4myGW8A71EjdkqCfJGMHJ4x79K7RBTjmklivvrW447RIhWtxJ9RzDaQlwq/S2ojjjI5wc56aDpYCgMR1HaMlxxQVnJ/l2Ax/efr1Wq6ZbNS80027tbWUiElVhAyB1EYHy51AZAP8+ZGcfvvQxeGi9h3nWGbonxapRrqS02yLlteqLpFcMdtOGWlS1Nym9iBwAGMpz581J+11pdT7Z0RrcqPqDq7VHZtQp9MjxK7fcioQlvPPtLSXIwgxWlBCUEpKykZAOc89aCJUQFKGMjABIzgE9hnPbH+56XWpmn1uamUaJQbralSqVGqcSqfCx5Hw6X5Mbd6SZBDalLZ5+ZCC2o4HzjHTS+QfYfpnFOOuNsOtrS2V8QEKQopSDIQDAAiwta2naFHlJHLJkgQDGB8HrPxBWJoJb/AOEbfYqN26sPrZpEIONQ9SrkpcNG5O/bHj06YyhpOFgBKO2STjJJJfyzacvkuvVvVpTiySSvWXUVRAydo5roAAGMBICR4Hfp7RIrEJpuNFbDLEdpDLLSc7UNtJCEJGSVEBIGSSSTznqbZbSW0kjnn2+vt+/RWeQdfqah5JW2HX1rCQRxC1khJtfaCBMibmOgEQIMnEdRMQLRi2ZPZJN9f//Z"
	],
	"studentAvailability": true,
	"createdOn": "1637562568166",
	"section": "D",
	"predictedStudentId": "3302008" ,
	"predictionConfidence" : [98.0,98.1],
	"studentId": "3302004",
	"securedMarks": 0,
	"totalMarks": 0,
	"marksInfo": [
		{
			"trainingData": [],
			"predictedMarks": "",
			"predictionConfidence" : [] ,
			"questionId": "QUESTION1",
			"obtainedMarks": "0"
		},
		{
			"trainingData": [],
			"questionId": "QUESTION2",
			"obtainedMarks": "2"
		},
		{
			"trainingData": [],
			"questionId": "QUESTION3",
			"obtainedMarks": "1"
		},
		{
			"trainingData": [],
			"questionId": "QUESTION4",
			"obtainedMarks": "3"
		},
		{
			"trainingData": [],
			"questionId": "QUESTION5",
			"obtainedMarks": "1"
		}
	],
	"schoolId": "gujrat001",
	"examDate": "05/10/2021",
	"subject": "Hindi",
	"classId": "5",
	"__v": 0
}
MNIST